
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 16 – Classes

Prof. Jeremy Dixon

Based on slides from http://www.csee.umbc.edu/courses/691p/notes/python/python3.ppt

www.umbc.edu

Last Class We Covered

• Review of Functions
• Code Design

– Readability
– Adaptability

• Top-Down Design
• Modular Development

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To reinforce what exactly it means to write

“good quality” code
• To learn more about importing
• To better understand the usefulness of modules
• To learn what a class is, and its various parts

– To cover vocabulary related to classes
– To be able to create instances of a class

www.umbc.edu

“Good Code”

• If you were to ask a dozen programmers what
it means to write good code, you would get a
different answer from each

• What are some characteristics that we have
discussed that help you write “good code?”

www.umbc.edu

8 Characteristics of Good Code
1. Readability

– As we previously discussed, writing code that is
easy to understand what it is doing

2. Adaptability (or Extensibility)
– Relates to how easy it is to change conditions or

add features or functionality to the code

3. Efficiency
– Clean code is fast code

From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/

www.umbc.edu

8 Characteristics of Good Code

4. Maintainability
– Write it for other people to read!

5. Well Structured
– How well do the different parts of the code work

together? Is there a clear flow to the program?

6. Reliability
– Code is stable and causes little downtime

From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/

www.umbc.edu

8 Characteristics of Good Code
7. Follows Standards

– Code follows a set of guidelines, rules and
regulations that are set by the organization

8. Regarded by Peers
– Good programmers know good code
– You know you are doing a good programming job

when your peers have good things to say about
your code and prefer to copy and paste from your
programs

From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/

www.umbc.edu

Importing and Modules

www.umbc.edu

Reusing Code

• If we take the time to write a good function,
we might want to reuse it later!

• It should have the characteristics of good code
– Clear, efficient, well-commented, and reliable
– Should be extensively tested to ensure that it

performs exactly as we want it to
– Reusing bad code causes problems in new places!

www.umbc.edu

Modules
• A module is a Python file that contains

definitions (of functions) and other statements
– Named just like a regular Python file:

myModule.py

• Modules allow us to easily reuse parts of our
code that may be generally useful
– Functions like isPrime(num) or
getValidInput(min, max)

www.umbc.edu

Importing Modules

• To use a module, we must first import it

• There are three different ways of importing:
import somefile
from somefile import *
from somefile import className

• The difference is what gets imported from the
file and what name refers to it after importing

www.umbc.edu

import
• In Lab 9, when we practiced using pdb (Python

debugger), we used the import command
import pdb

• This command imports the entire pdb.py file
– Every single thing in the file is now available
– This includes functions, classes, constants, etc.

www.umbc.edu

import
• To use the things we’ve imported this way, we

need to append the filename and a period to
the front of its name

• To access a function called myFunction:
myModule.myFunction(34)

• To access a class method:
myModule.myClass.classMethod()

IMPORTANT! Must include module name as namespace

www.umbc.edu

from someFile import *

• Again, everything in the file someFile.py
gets imported (we gain access to it)
– The star (*) means we import every single

thing from someFile.py

• Be careful!
– Using this import command can easily

overwrite an existing function or variable

www.umbc.edu

from someFile import *
• When we use this import, if we want to refer

to anything, we can just use its name

• We no longer need to use “someFile.”
in front of the things we want to access

myFunction(34)
myClass.classMethod()

• These things are now in the current namespace

www.umbc.edu

from someFile import X

• Only the item X in someFile.py is
imported

• After importing X, you can refer to it by using
just its name (it’s in the current namespace)

• But again, be careful!
– This would overwrite anything already defined in

the current namespace that is also called X

www.umbc.edu

from someFile import X

from myModule import myClass

• We have imported this class and its methods
myClass.classMethod()

• But not the other things in myModule.py
myFunction(34) (not imported)

• We can import multiple things using commas:
from myModule import thing1, thing2

www.umbc.edu

Directories for Imports

• Where does Python look for module files?
– The list of directories where Python will look for

the files to be imported is sys.path

www.umbc.edu

Directories for Imports
• This is just a variable named ‘path’ stored inside the ‘sys’

module
>>> import sys
>>> sys.path
['',

'/Library/Frameworks/Python.framework/Versions/2.5/lib/
python2.5/site-packages/setuptools-0.6c5-py2.5.egg’, …]

• To add a directory of your own to this list, append it to this
list
sys.path.append(‘/my/new/path’)

www.umbc.edu

Object Oriented Programming:
Defining Classes

www.umbc.edu

Classes

• A class is a special data type which defines
how to build a certain kind of object.

• The class also stores some data items that are
shared by all the instances of this class

• Classes are blueprints for something
• Instances are objects that are created which

follow the definition given inside of the class

www.umbc.edu

Classes

• In general, classes contain two things:
1. Attributes of an object (data members)

• Usually variables describing the thing

2. Things that the object can do (methods)
• Usually functions describing the action

www.umbc.edu

Class Parts

• Data member: A class variable or instance
variable that holds data associated with a
class and its objects.

• Method : A special kind of function that is
defined in a class definition.

www.umbc.edu

Instances of a Class

• Object: A unique instance of a data structure
that's defined by its class. An object comprises
both data members (class variables and
instance variables) and methods.

www.umbc.edu

Class Description

• If a class describes a thing, we can think about
it in terms of English
– Object -> Noun
– Attribute -> Adjective
– Method (Function) -> Verb

www.umbc.edu

Class Example
class Dog:

def __init__(self, name):

self.name = name

self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

From: https://docs.python.org/2/tutorial/classes.html

Class to build
dogs

Characteristic
of dog

Method (function) to
add tricks

Creating a new dog
named ‘Fido’

www.umbc.edu

Class Example
class Dog:

def __init__(self, name):

self.name = name

self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

From: https://docs.python.org/2/tutorial/classes.html

Creates an instance
of dog (called an

object)

Refer to Fido as “d”
from then on

Add a trick to Fido
called ‘roll over’

www.umbc.edu

Defining a Class

• Instances are objects that are created which
follow the definition given inside of the class

• Python doesn’t use separate class interface
definitions as in some languages

• You just define the class and then use it

www.umbc.edu

Everything an Object?
• Everything in Python is really an object.

– We’ve seen hints of this already…
“hello”.upper()
list3.append(‘a’)

– New object classes can easily be defined in addition to
these built-in data-types.

• In fact, programming in Python is typically done in an object
oriented fashion.

www.umbc.edu

Methods in Classes

• Define a method in a class by including function
definitions within the scope of the class block

• There must be a special first argument self in all of
method definitions which gets bound to the calling
instance

• There is usually a special method called __init__
in most classes

• We’ll talk about both later…

www.umbc.edu

Class Example student

class student:

def __init__(self, n, a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

www.umbc.edu

Using Class Student

def main():

a = student("John", 19)

print(a.full_name)

print(a.get_age())

main()
bash-4.1$ python class_student.py
John
19
bash-4.1$

Create new student object
named “John”, aged 19

Print an attribute of
the student

Call a method of
student

Output

www.umbc.edu

Creating and Deleting Instances

www.umbc.edu

Instantiating Objects
• There is no “new” keyword as in Java.
• Just use the class name with () notation and assign the result

to a variable
• __init__ serves as a constructor for the class. Usually does

some initialization work
• The arguments passed to the class name are given to its
__init__() method

• So, the __init__ method for student is passed “Bob” and 21
and the new class instance is bound to b:

b = student(“Bob”, 21)

www.umbc.edu

Constructor: __init__

• An __init__ method can take any number of
arguments.

• Like other functions or methods, the
arguments can be defined with default values,
making them optional to the caller.

• However, the first argument self in the
definition of __init__ is special…

www.umbc.edu

Self

• The first argument of every method is a reference to
the current instance of the class

• By convention, we name this argument self
• In __init__, self refers to the object currently being

created; so, in other class methods, it refers to the
instance whose method was called

• Similar to the keyword this in Java or C++
• But Python uses self more often than Java uses this

www.umbc.edu

Self
• Although you must specify self explicitly

when defining the method, you don’t include
it when calling the method.

• Python passes it for you automatically
Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)
self.age = num

www.umbc.edu

Deleting Instances

• When you are done with an object, you don’t have to
delete or free it explicitly.

• Python has automatic garbage collection.
• Python will automatically detect when all of the

references to a piece of memory have gone out of
scope. Automatically frees that memory.

• Generally works well, few memory leaks
• There’s also no “destructor” method for classes

www.umbc.edu

Access to Attributes and
Methods

www.umbc.edu

Definition of Student

def main():

a = student("John", 19)

print(a.full_name)

print(a.get_age())

main()

www.umbc.edu

Traditional Syntax for Access

>>> f = student(“Bob Smith”, 23)

>>> f.full_name # Access attribute

“Bob Smith”

>>> f.get_age() # Access a method

23

www.umbc.edu

Accessing Unknown Members

• Problem: Occasionally the name of an attribute or
method of a class is only given at run time…

• Solution:
getattr(object_instance, string)

• string is a string which contains the name of an
attribute or method of a class

• getattr(object_instance, string)
returns a reference to that attribute or method

www.umbc.edu

getattr(object_instance, string)
>>> f = student(“Bob Smith”, 23)
>>> getattr(f, “full_name”)
“Bob Smith”
>>> getattr(f, “get_age”)
<method get_age of class studentClass at
010B3C2>

>>> getattr(f, “get_age”)() # call it
23
>>> getattr(f, “get_birthday”)
Raises AttributeError – No method!

www.umbc.edu

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)
>>> hasattr(f, “full_name”)
True
>>> hasattr(f, “get_age”)
True
>>> hasattr(f, “get_birthday”)
False

www.umbc.edu

Attributes

www.umbc.edu

Attributes

• Two Kinds of Attributes (Data Members):
1. Data Attributes also called Instance Variables
2. Class Attributes also called Class Variables

Important: The word attribute and the
word variable can be used
interchangeably for this topic!

www.umbc.edu

Data Attributes
• Data attributes or instance attributes

– Variable owned by a particular instance of a class
– Each instance has its own value for it
– These are the most common kind of attribute

www.umbc.edu

Data Attributes
• Data attributes are created and initialized by an
__init__() method.
– Simply assigning to a name creates the attribute
– Inside the class, refer to data attributes using self

• for example, self.full_name
class teacher:
“A class representing teachers.”
def __init__(self,n):

self.full_name = n
def print_name(self):

print(self.full_name)

Instance attribute

Method

www.umbc.edu

Class Attributes
• Class attributes

– Owned by the class as a whole
– All class instances share the same value for it
– Called “static” variables in some languages
– Good for (1) class-wide constants and (2) building

counter of how many instances of the class have
been made

www.umbc.edu

Class Attributes
• Because all instances of a class share one copy of a

class attribute, when any instance changes it, the
value is changed for all instances

• Class attributes are defined within a class definition
and outside of any method

• Since there is one of these attributes per class and
not one per instance, they’re accessed via a different
notation:
– Access class attributes using self.__class__.name

notation -- This is just one way to do this & the safest in general.

www.umbc.edu

Class Attributes

class sample: >>> a = sample()
x = 23 >>> a.increment()
def increment(self): >>> a.__class__.x

self.__class__.x += 1 24

www.umbc.edu

Data vs. Class Attributes

class counter:
overall_total = 0

class attribute
def __init__(self):

self.my_total = 0
data attribute

def increment(self):
counter.overall_total = \
counter.overall_total + 1
self.my_total = \
self.my_total + 1

>>> a = counter()
>>> b = counter()
>>> a.increment()
>>> b.increment()
>>> b.increment()
>>> a.my_total
1
>>> a.__class__.overall_total
3
>>> b.my_total
2
>>> b.__class__.overall_total
3

www.umbc.edu

Inheritance

www.umbc.edu

Inheritance

• Inheritance is used to indicate that one class
will get most or all of its features from a
parent class.

For example, computer science students
are a specific type of student. Therefore,
they probably share attributes with all
students. We can use inheritance to use
those already defined attributes and
methods of students for our computer
science students.

www.umbc.edu

Subclasses
• A class can extend the definition of another class

– Allows use (or extension) of methods and attributes
already defined in the previous one.

– New class: subclass. Original: parent, ancestor or
superclass

• To define a subclass, put the name of the superclass
in parentheses after the subclass’s name on the first
line of the definition.

• Python has no ‘extends’ keyword like Java.
– Multiple inheritance is supported.

www.umbc.edu

Subclass Example

class cs_student(student):

New subclass name

Superclass or parent

www.umbc.edu

Redefining Methods
• To redefine a method of the parent class, include a

new definition using the same name in the subclass.
– The old code won’t get executed.

• To execute the method in the parent class in addition
to new code for some method, explicitly call the
parent’s version of the method.
parentClass.methodName(self, a, b, c)
– The only time you ever explicitly pass ‘self’ as an

argument is when calling a method of an ancestor.

www.umbc.edu

Inheritance Example
class student:

#"A class representing a student."

def __init__(self,n,a):
self.full_name = n
self.age = a

def get_age(self):
return self.age

class cs_student (student):
#"A class extending student."

def __init__(self,n,a,s):
student.__init__(self,n,a) #Call __init__ for student
self.section_num = s

def get_age(self): #Redefines get_age method entirely
print ("Age: " + str(self.age)

www.umbc.edu

Extending __init__
• Same as for redefining any other method…

– Commonly, the ancestor’s __init__ method is executed in addition
to new commands.

– You’ll often see something like this in the __init__ method of
subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the parent’s class.

www.umbc.edu

Special Built-In
Methods and Attributes

www.umbc.edu

Built-In Members of Classes

• Classes contain many methods and attributes that
are included by Python even if you don’t define them
explicitly.
– Most of these methods define automatic functionality

triggered by special operators or usage of that class.
– The built-in attributes define information that must be

stored for all classes.

• All built-in members have double underscores
around their names: __init__ __doc__

www.umbc.edu

Special Methods
• For example, the method __repr__ exists for all classes,

and you can always redefine it
• The definition of this method specifies how to turn an

instance of the class into a string
– print f sometimes calls f.__repr__() to produce a string for

object f

– If you type f at the prompt and hit ENTER, then you are also calling
__repr__ to determine what to display to the user as output

www.umbc.edu

Special Methods - Example
class student:

...
def __repr__(self):
return “I’m named ” + self.full_name

...

>>> f = student(“Bob Smith”, 23)

>>> print f

I’m named Bob Smith

>>> f

“I’m named Bob Smith”

www.umbc.edu

Special Methods
• You can redefine these as well:

__init__ : The constructor for the class
__cmp__ : Define how == works for class
__len__ : Define how len(obj) works
__copy__ : Define how to copy a class

• Other built-in methods allow you to give a class the ability to
use [] notation like an array or () notation like a function call

www.umbc.edu

Special Data Items
• These attributes exist for all classes.

__doc__ : Variable for documentation string for class
__class__ : Variable which gives you a reference to the class from

any instance of it
__module__ : Variable which gives a reference to the module in

which the particular class is defined
__dict__ :The dictionary that is actually the namespace for a class

(but not its superclasses)
• Useful:

– dir(x) returns a list of all methods and attributes defined for
object x

www.umbc.edu

Special Data Items – Example
>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”, 34)

www.umbc.edu

Private Data and Methods

• Any attribute/method with 2 leading under-scores in
its name (but none at the end) is private and can’t be
accessed outside of class

• Note: Names with two underscores at the beginning
and the end are for built-in methods or attributes for
the class

• Note: There is no ‘protected’ status in Python; so,
subclasses would be unable to access these private
data either.

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• Midterm Survey (on Blackboard)

– Due by Friday, November 6th at 8:59:59 PM

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Objects Continued

	CMSC201� Computer Science I for Majors��Lecture 16 – Classes
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	“Good Code”
	8 Characteristics of Good Code
	8 Characteristics of Good Code
	8 Characteristics of Good Code
	Importing and Modules
	Reusing Code
	Modules
	Importing Modules
	import
	import
	from someFile import *
	from someFile import *
	from someFile import X
	from someFile import X
	Directories for Imports
	Directories for Imports
	Object Oriented Programming:�Defining Classes
	Classes
	Classes
	Class Parts
	Instances of a Class
	Class Description
	Class Example
	Class Example
	Defining a Class
	Everything an Object?
	Methods in Classes
	Class Example student
	Using Class Student
	Creating and Deleting Instances
	Instantiating Objects
	Constructor: __init__
	Self
	Self
	Deleting Instances
	Access to Attributes and Methods
	Definition of Student
	Traditional Syntax for Access
	Accessing Unknown Members
	getattr(object_instance, string)
	hasattr(object_instance,string)
	Attributes
	Attributes
	Data Attributes
	Data Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Data vs. Class Attributes
	Inheritance
	Inheritance
	Subclasses
	Subclass Example
	Redefining Methods
	Inheritance Example
	Extending __init__
	Special Built-In �Methods and Attributes
	Built-In Members of Classes
	Special Methods
	Special Methods - Example
	Special Methods
	Special Data Items
	Special Data Items – Example
	Private Data and Methods
	Any Other Questions?
	Announcements

